Photometry & vision

Physiology of the eye and glare assessment

Prof. dr. Valéry Ann Jacobs (valery.ann.jacobs@vub.be)

MOBI IS THE INNOVATIVE RESEARCH HUB FOR ELECTROMOBILITY IN EUROPE

- Electric and autonomous driving
- Innovative batteries
- Intelligent drive systems
- Energy management
- Power Electronics
- Design for Sustainability
- Charging infrastructure
- Lighting for transport

MERLIN lighting research

- V2X communication with visual light (Jan)
- Metrology of clusters of LEDs (Guillaume)
- Visual communication / DRLs (Li Ru & Yan)
- Applications of LED arrays (Pooria)
- Measurement protocols for Light pollution (Arjen, Leonard)
- Impact on health&wellbeing (Iris, Siman)
- Lighting for the arts (Caroline, Maarten)

Near-field and far-field goniophotometry of LED arrays

Berchtold Chromophare E778 Surgical Iuminaire, Hella LEDayFlex II – Rectangular DRL, , Schréder Ampera Road Lighting 6

An example of how wrong things can get

 $E = \frac{I \cdot \cos \alpha_{rec}}{R^2}$

7

An example of how wrong things can get

Similar problems exist near smaller LED arrays

The "limiting photometric distance" (LPD) is defined as the distance from which the inverse square law is valid

A disk source can model an LED with focusing optics creating a narrow beam

Ш

Far larger measurement distances are needed for narrow beam sources, which is experimentally shown for LEDs and LED arrays

From what distance, do we reach the FF of an Array?

13

Distance $\left[\overline{\overline{R}} / D_{\text{Array}} \right]$

The human eye as a lens system with imaging plane

The optical detectors of the human eye

A cross-section of the retina of the eye

The photo, a scanning electron micrograph of a primate retina, shows what the rods and cones really look like.

On-centre and off-centre receptive fields

The response of on-centre ganglion cells to light

Edge filtering is performed by the ganglion cells

The Hermann grid (or Hering grid)

Figure 2.9 (a) The Hermann grid and (b) the version by **Geier et al. (2008)** which challenges the Baumgartner model. Why should the wiggles make the illusion disappear?

The scintillating grid

Figure 2.11 The scintillating grid. As you move your eyes around (a), you should see black spots flashing in the middle of the white spots. Why should this happen? It is clearly a different effect from the Hermann grid. Or is it? Just like the Hermann grid, making the lines a bit wiggly abolishes the illusion, as shown in (b).