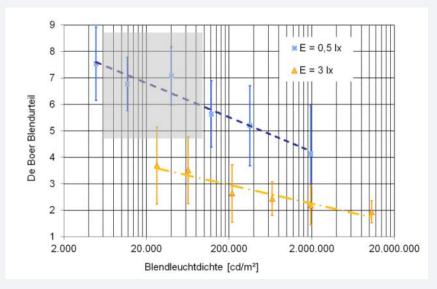
Field Study: Glare of Headlamps with Small Light Emitting Areas

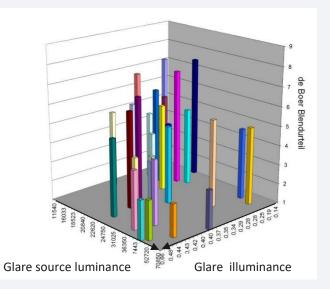
DVN Glare Workshop, Feb. 2025 | Mathias Niedling, Ph.D.

Background

- The design of headlamps increasingly features small light-emitting areas
- To get the ECE approval; certain luminous intensities in different angels have to be realized.
- Realizing the same luminous intensity: the smaller the light emitting area the higher the luminance of headlamps surface.
 - There is no limitation of luminance by the legal requirements

Research question


Do headlamps with small light emitting areas produce more glare for oncoming traffic than those with large surfaces?



State of research

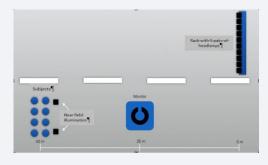
Laboratory setup & glare source (E & L can be adjusted separate)

Real headlamps (look into the source) (E & L can not be adjusted separate)

"...there is no traceable measuring method that can be used to determine the average glare luminance of real headlamps."

2

L-LAB

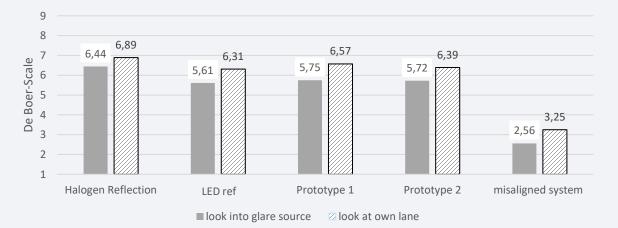

State of research

Several studies at the L-LAB:

- No influence of high luminance on disability and discomfort glare, if the legal requirements are met.
- Strong increase of disability and discomfort glare if headlamps are misaligned.

Last study with focus on light emitting surface

- Study conducted in 2019 in the HELLA light tunnel in Lippstadt [2] Sapovalov, [3] Schmidt et al.]
- Subjects (N = 61) were placed at point B50L.
- Test persons were glared with four pairs of headlamps with very different light emitting areas and one misaligned headlamp (higher E at eye)
- Discomfort glare was assessed using the De Boer scale, once looking on the subjects' own lane, once looking directly into the headlamps.



State of research

- If the legal requirements were met, disability glare was almost identical.
- If the maximum ECE illuminance values were exceeded, disability glare increased drastically.
- If the legal requirements were met, there were only slight differences in discomfort glare.
- If the maximum ECE values were exceeded, discomfort glare increased strongly.

Discomfort Glare - Light Tunnel

Dynamic study: operationalization of the research question and hypotheses

Operationalization

 Aim of this study: assessing the influence of high luminance on discomfort glare during driving on country roads.

Hypotheses

- Hypotheses 1: The discomfort glare of headlamps that differ in luminance but meet the legal requirements is comparable
- Hypotheses 2: Misaligned headlamps produce significantly more discomfort glare than correctly adjusted ones.

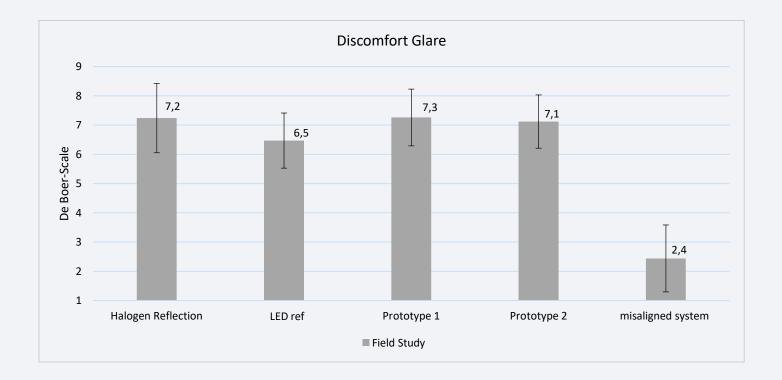
Experimental Setup and Procedure

- Subjects drive between two roundabouts on a straight, dry country road.
 - 2 Test vehicles with different headlamp systems are oncoming.
 - After each pass glare has to be rated on the De Boer scale.
 - Test headlamps vary in luminance of the light emitting areas.
- Illuminance at the eye of the oncoming driver in B50L is comparable.
 - One pair of headlamps is misaligned (maximum legal illuminance value is exceeded).
- The order of test headlamps is randomized.
- Each pair of headlamps is presented twice.
- A total of five pairs of headlamp were mounted.
 - Four pairs were adjusted correctly.
 - One pair of headlamps was misaligned.

Characterization of the Headlamps used

	E _{50m}	E _{37,5m}	Area (cm²)
Halogen Reflection	0.39	0.67	123
LED Reference	0.37	0.57	20
Prototype 1	0.44	0.68	35
Prototype 2	0.41	0.64	17
Hal. Proj. Misalig.	2.50	1.47	38

Illuminance assessed in a distance of 50 m and 37.5 m. Area: light emitting area (outer dimensions) for one headlamp, does not correlate with a homogenous luminous area


Sample description

- 17 subjects have participated, 12 male, 5 female
- Age: average 30.9 years (Median: 28 years)
- Most participants had little or no knowledge in lighting technology.
- Further variables (age, sex, glasses, driving experience etc.) had no influence in subjects' rating behaviour.
- Each headlamp was evaluated twice, the ratings were averaged.

Discomfort glare rating of the headlamps

Conclusion

- In the study presented here discomfort glare was assessed under dynamic conditions in real-life traffic.
- The results of the earlier studies were essential confirmed:
 - The luminance of the light emitting area of headlamps have only a limited influence on discomfort glare.
 - However, high illuminance levels at the eye of the oncoming driver cause very strong glare.
 This effect is much bigger than the effect that might be attributed to high luminance levels.
- Influence of the position of the glare sources on the test rack will be checked
- In order to minimise glare in road traffic at night it is important to ensure that the legal requirements are permanently fulfilled.

References

- [1] Völker, S.: Blendung durch Kfz-Scheinwerfer im nächtlichen Straßenverkehr: Ein Review bis 2006 Beschreibung, Maßzahlen, Bewertungsmethoden, Universitätsverlag der TU Berlin, 2017
- [2] Sapovalov, T.: *Blendung durch KFZ-Scheinwerfer*. Master thesis. Hamburg, 2019.
- [3] Schmidt, C., Sapovalov, T., Locher, J.: *Hip but Risky? New Studies about the Influence of Small Light Emitting Areas on Headlamp Glare,* VISION 2020, 118-121, 2020.

Research institute for automotive lighting and mechatronics

Mathias Niedling, Ph.D. | L-LAB | Lippstadt

Kontakt www.L-LAB.de kontakt@L-LAB.de

