

Editorial

Safe And Sleek, In-Car Displays To Monitor Rear View

A LEXUS DISPLAY (TOYOTA IMAGE)

Cars are becoming wider, and parking spaces are getting narrower. This dimensional equation is well known to most city dwellers, at least for the one still using their own car. The first operation when you park is to flip in the side mirrors if they don't automatically tilt down when you shift to Reverse.

Auto designers dream of getting rid of side mirrors to improve safety and aerodynamics, reduce noise for a quieter cabin, and provide better visibility and sleeker design. This trend fits well with today's rampant in-car HMI screen-o-mania, as the mirror is functionally replaced by a camera and a display somewhere between the door and the dash.

That's the focus of in this week's in-depth piece, to understand the consequences for car interiors.

Speaking of which, HMI is an important session of the upcoming DVN Interior Workshop, together with Seats, Materials, Interior Lighting, Driver Monitoring and Design. It is time to [register online](#) and plan your presence, including your product exhibition and lecture. Lineup is already pretty intensive with the confirmed presence of Lucid, Italdesign, BMW, Marelli, Yanfeng, Antolin, Valeo, Dow, AMS Osram, and an Interior Design Roundtable with many automakers and suppliers.

I'm looking forward to meeting you there!

Sincerely yours,

Philippe Aumont
DVN-Interior General Editor

In Depth Interior Technology

Side Mirrors Moving In

GENTEX IMAGE

Today, some top-segment cars (in countries where it's allowed) offer the possibility to replace traditional side rearview mirrors with digital camera systems, reproducing road vision on a display. While this innovation has been on the market for some years, it is not yet becoming mainstream. To understand why, let's go back to the roots to capture the key industry steps on rearview mirrors, and let's compare with the latest innovations.

History of Rearview Mirrors in Cars

The rearview mirror is one of the simplest yet most essential components of modern automobiles. While it seems like an obvious necessity today, its development has an interesting history intertwined with the evolution of cars themselves.

Early Concepts and Pre-Automobile Era

Before the invention of automobiles, early forms of rear-viewing devices were occasionally used on horse-drawn carriages.

One of the earliest known uses of a rearview mirror on an automobile occurred during the 1911 Indianapolis 500 race. A driver named Ray Harroun installed a mirror on his Marmon Wasp race car, eliminating the need for a riding mechanic who typically served as a spotter.

Following Harroun's innovation, automakers began to recognize the utility of rearview mirrors. By the 1920s, they started appearing more frequently in production cars. During the 1930s, automakers began incorporating both interior and exterior mirrors more consistently into vehicle designs, setting the foundation for their widespread adoption.

In the 1950s, new developments improved rearview mirrors' functionality. The introduction of the day-night mirror, which allowed drivers to adjust for glare from headlights at night, significantly improved driver comfort and safety.

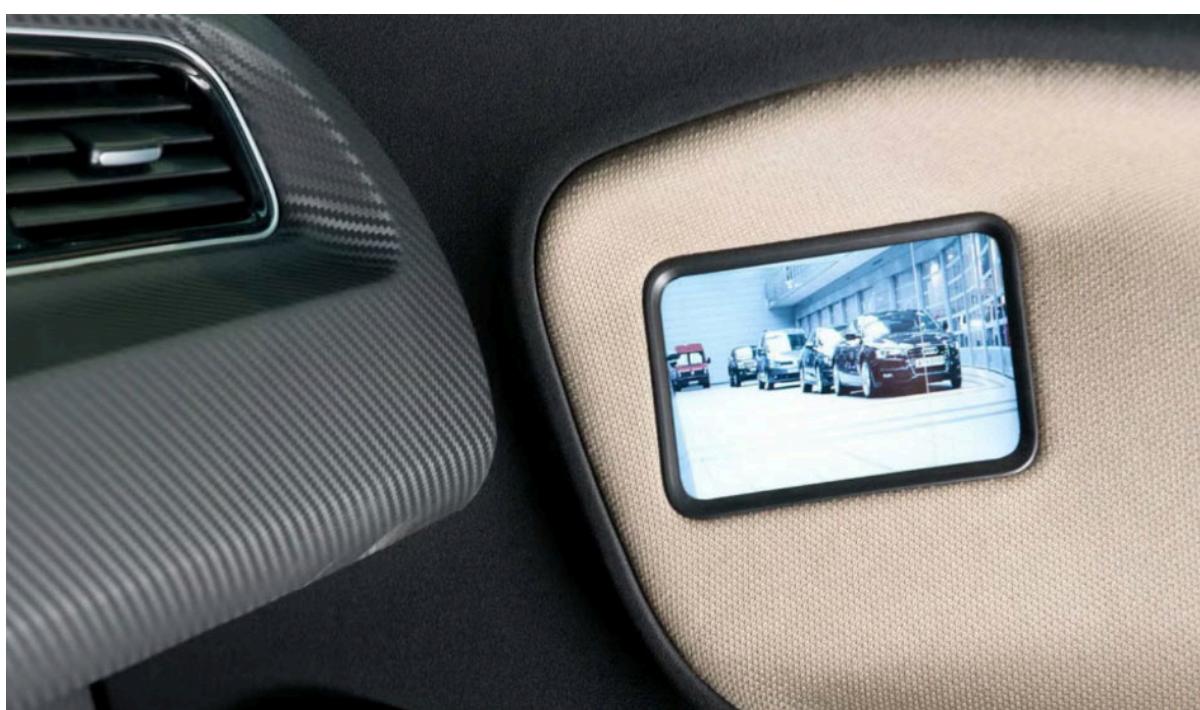
By the 1960s, exterior side mirrors became increasingly common. In many regions, they were mandated as standard safety equipment for all vehicles.

In the 70s, automotive safety regulations further influenced rearview mirror design. The U.S. Federal Motor Vehicle Safety Standards began to require all vehicles to include both an interior rearview mirror and at least one external side mirror. The first European directive to that effect was published in 1971.

As technology advanced, traditional rearview mirrors evolved new functions and came to include cameras, displays, and auto-dimming features. Some key developments include:

- Auto-dimming mirrors to reduce glare from headlights at night.
- Integrated high-definition cameras provide a live video feed in rearview mirrors.
- Blind spot monitoring systems use radar and sensors to alert drivers to vehicles in their blind spots.
- Digital mirrors replace traditional reflective-glass panels with high-resolution camera-driven screens, offering a wider and clearer field of view.

Today, one of the most groundbreaking innovations in recent years is the shift from traditional side and rearview mirrors to digital camera-based systems, commonly referred to as mirrorless vehicles.


MIRRORLESS VEHICLE TECHNOLOGY

Camera system

The core component of mirrorless vehicles is the camera system, which consists of high-resolution, wide-angle cameras. These cameras are strategically placed on the vehicle's exterior to cover necessary fields of vision. The cameras typically have high dynamic range (HDR) for better contrast in varying lighting conditions; infrared capabilities for night vision, and antiglare coatings to minimize reflections from headlights and sunlight.

Display screens

The video feed from the cameras is displayed on high-resolution screens inside the vehicle. These screens are usually positioned near the A-pillars or integrated into the dashboard or in-between the door and the dashboard. The placement ensures that drivers can view the feed without significantly shifting their gaze away from the road.

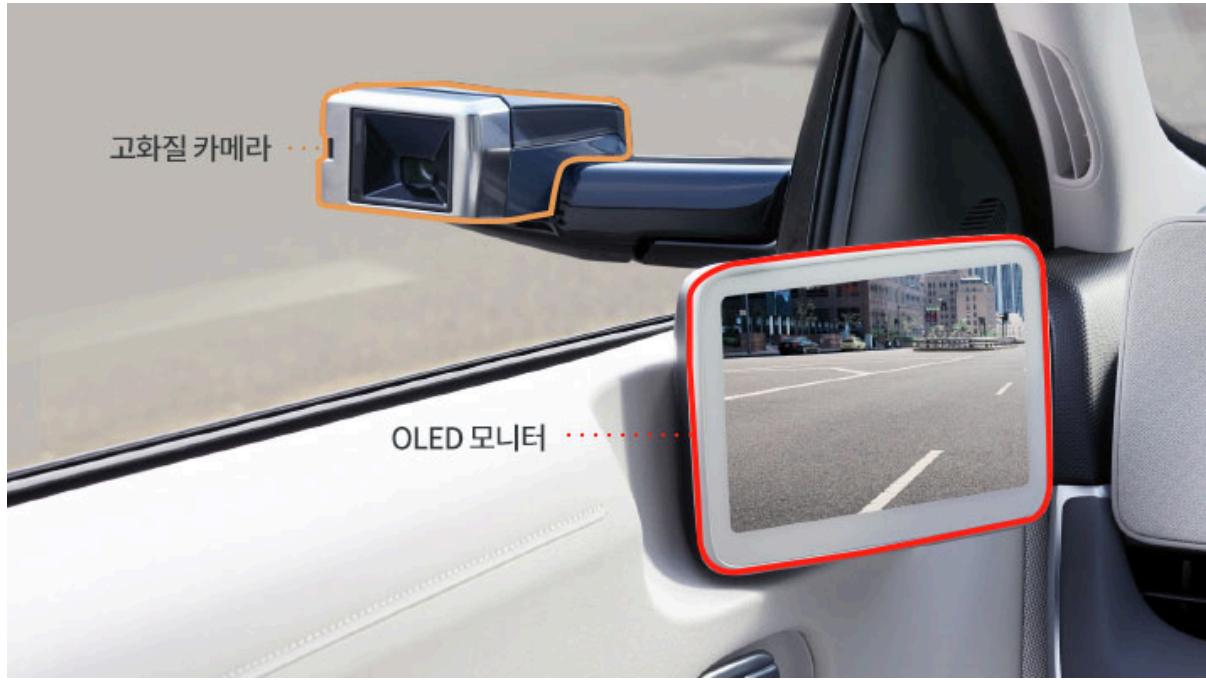
Image processing and AI

To ensure a smooth and clear display, the camera feed undergoes real-time image processing using AI algorithms to enhance image quality, adjust brightness and contrast, and filter out unnecessary distractions. Some systems also include predictive analytics that warn drivers about potential hazards detected in the camera feed (like a blind spot warning).

Connectivity and integration with autonomous systems

Mirrorless technology integrates seamlessly with other advanced driver-assistance systems (ADAS), such as blind spot monitoring, lane departure warning, adaptive cruise control, and collision avoidance systems. By combining these technologies, mirrorless vehicles contribute to the broader goal of autonomous driving, where cars rely on sensors and AI for navigation and decision-making.

So what's the holdup?


In principle, the use of cameras instead of traditional mirrors should be an innovation able to replace in a short time the current mirror systems, as has happened with other hi-tech innovation in the vehicle that became quickly state of the art.

And regulations, at least outside the North American regulatory island, are evolving towards the compulsory use of camera technology. The recent development of the EU General Safety Regulation II (GSR II), has introduced several new rules the vehicles on EU roads must comply with, from 7 July, 2024, like reversing detection with camera and/or other sensor technology. Camera monitor systems provide a clear view of the area behind the vehicle, alerting drivers to vulnerable road users or obstacles they might not see otherwise and lowering the risk of accidents.

Nonetheless, regardless of advanced technology available and regulation progress, we still don't have mirrorless cars on the road today.

The reasons include technical-safety ones, simple end-user skepticism, and cost of such systems.

So let's look at some pros and cons, and try to understand why mirrorless cars will most probably remain, still for some time, an option for the wealthy tech-lover.

Advantages

- **Better visibility**

One of the primary advantages of mirrorless technology is improved visibility. Traditional mirrors have inherent limitations, including blind spots and poor performance in adverse weather conditions such as rain, fog, and darkness. Camera-based systems, however, can be equipped with night vision, anti-glare, and weather-resistant features, providing a more reliable and comprehensive view of the vehicle's surroundings.

Moreover, these systems can incorporate advanced driver-assistance features such as object detection, lane departure warnings, and real-time hazard alerts. This significantly enhances road safety by reducing human error, which is a leading cause of accidents worldwide.

- **Reduced Aerodynamic Drag**

Conventional mirrors create aerodynamic resistance, which can negatively impact a vehicle's fuel efficiency. By replacing bulky mirrors with compact camera modules, mirrorless vehicles can achieve a sleeker design with reduced drag. This contributes to better fuel economy in combustion engine vehicles and extended battery range in electric vehicles. Removing traditional side mirrors can improve fuel efficiency by up to five per cent, making mirrorless technology a crucial innovation in sustainable transportation.

- **Aesthetic and functional design**

Automobile manufacturers continuously strive for modern, futuristic designs. Mirrorless vehicles enable sleeker, more aesthetically pleasing exteriors by eliminating the protruding elements of side mirrors. This enhances the overall look of the vehicle while also improving structural integrity and reducing wind noise.

- **Smart features and customization**

Mirrorless systems offer customization options that traditional mirrors cannot. Drivers can adjust camera angles digitally, zoom in or out, and even receive augmented-reality overlays for navigation assistance. Advanced systems may also allow integration with autonomous driving features, further pushing the boundaries of vehicle automation and safety. And decision-making.

LEXUS WITHOUT SHINY-GLASS MIRRORS - TOYOTA IMAGE

Challenges and limitations

- **Regulatory and legal hurdles**

One of the major obstacles to mirrorless vehicles is regulatory approval. Some countries have strict regulations mandating the use of traditional mirrors for road safety. However, as technology proves its reliability and benefits, regulatory bodies are beginning to adapt. Japan and the European Union have already approved the use of digital mirrors in production vehicles, while other regions, including the United States, are still undecided.

- **Driver adaptation and learning curve**

Transitioning from traditional mirrors to digital screens involves a learning curve. Drivers accustomed to conventional mirrors may find it challenging to rely on digital displays. Automakers must ensure intuitive placement and user-friendly interfaces to facilitate a seamless transition.

- **2D vision**

The camera offers a 2D vision, with the result of missing depth, characteristic present in normal mirrors, which allow the driver to correctly evaluate the distance to other vehicles.

Moreover, normally drivers check mirrors very frequently: with a display there is the need to constantly focus from road to display vision, which is generating eye fatigue.

Mirrors reflect the light already bouncing off of existing objects. Since the light must travel from the object to the mirror and then to the driver, their eyes are still focusing on a faraway object. Any other existing defects to a driver's eyesight (myopia, hyperopia, or otherwise) apply in the same way. In contrast, a camera transmits images to a display, which is the object to focus on and it's much closer. With rearview mirrors replaced by screens - however strong glasses the driver is wearing, they can't accommodate the quick focus change required since this is down to our eyes, not the glasses.

- **Reliability and maintenance needs**

Camera systems require consistent calibration and maintenance to function optimally. Environmental factors such as dust, rain, and snow can obscure camera lenses, potentially affecting visibility. Manufacturers need to incorporate self-cleaning mechanisms & defogging features. But most of all, technical failures are the issue. A failure of a camera, when traditional mirrors are not present, it's a very dangerous case potentially source of fatal accidents: safety regulations would not allow the use unless redundant systems to ensure reliability are present. Redundant systems would also increase the cost for the manufacturer.

- **Cost**

Implementing mirrorless technology increases the overall cost of a vehicle due to the need for high-quality cameras, screens, and image-processing software. While the cost is expected to decrease as technology matures, affordability remains a concern for mass-market adoption.

AUDI E-TRON - AUDI IMAGES

Current systems on the market

Several automakers have already introduced mirrorless vehicles into the market, paving the way for widespread adoption.

- **Audi e-tron:** One of the first production vehicles to feature mirrorless technology, the Audi e-tron offers side-view cameras with OLED displays inside the cabin.
- **Lexus ES:** Lexus has integrated digital side mirrors in select models, enhancing visibility and reducing aerodynamic drag.
- **Honda e:** Honda's compact electric vehicle features an innovative mirrorless system, contributing to its futuristic design and efficiency.
- **Tesla and Future EVs:** Tesla and other EV manufacturers are exploring mirrorless technology.
- The **Polestar 4** was shown as a complete mirrorless car at the New York Auto Show. Drivers are expected to rely on a digital rearview mirror, conventional side mirrors, and a handful of driver assistance systems. According to Polestar, the unique design "enhances also the interior space and the rearward view."
- **Ficosa:** Pioneered digital mirror systems in 2018 and continues to expand in this segment, offering solutions for various vehicle markets.

FICOSA IMAGE

- **Gentex** Developed the Full Display Mirror®, an intelligent rear-vision system that uses a custom camera and mirror-integrated video display to optimize a vehicle's rearward view.

GENTEX IMAGE

- **Harman** introduced their E-mirror, a camera and display combination that enhances visual awareness by providing valuable information such as distance to other vehicles or speed.

CONTINENTAL IMAGE

- **Continental's ProViu®**ⁱ is a camera system that offers high-definition images, enhancing visibility in various driving conditions. It is been developed first for commercial and special vehicles. As technology advances and regulations become more accommodating, more automakers are expected to adopt mirrorless systems across various vehicle segments.

What's next?

GENTEX IMAGE

Mirrorless vehicles represent a significant leap upward in automotive innovation, combining improved safety, aerodynamics, and aesthetics. While challenges remain, ongoing technological advancements and regulatory changes will accelerate the adoption of this transformative technology. In the coming years, we could expect more mirrorless systems offered as an optional contributing to safer and more efficient transportation worldwide.

Interior News

Lear Puts ComfortMax Seat Tech in GM Cars

INTERIOR NEWS

LEAR IMAGE

Lear Corporation has announced an engineering integration with General Motors, beginning in the second quarter of 2025, of the Lear ComfortMax Seat, which merges thermal comfort technologies with trim covers, providing occupant comfort and thermal management and improved manufacturing efficiency

The ComfortMax is part of Lear's suite of thermal comfort systems . It delivers thermal management that achieves up to 40-per-cent faster time-to-sensation for both heating and ventilation. Additionally, the intelligent modular design streamlines assembly processes and helps reduce part count by up to half.

Lear's thermal-comfort portfolio includes other solutions such as ComfortFlex, which integrates two or more TCS products for enhanced flexibility, and FlexAir, a sustainable alternative to traditional polyurethane foam, designed to align with automaker sustainability initiatives.

"We are honored to partner with General Motors, a company renowned for its commitment to quality and innovation, as we bring the ultimate in seating comfort and design to select GM vehicles," said Lear President and CEO Ray Scott. "Our ComfortMax Seat exemplifies Lear's dedication to innovation that drives customer satisfaction while also streamlining manufacturing processes. With our in-house capabilities and advanced technologies, Lear remains at the forefront of reshaping the automotive seating experience, we're pleased to provide premium comfort and industry-defining innovation for GM's valued customers."

Explorer to Reinvent Ford in Europe

INTERIOR NEWS

FORD IMAGES

The Ford Explorer is an important first step and is particularly important for the survival of the plant in Cologne, where we will visit in conjunction with our DVN Interior Workshop on April 8-9 in Cologne.

The Explorer is compatible with the masses and avoids any futuristic gimmicks on the outside: no LED strips, no retractable handles, no UFO look. The interior of the model also stands out from its VW brother ID.4.

The central 14.6" screen is slightly lower and set on edge. The display can be easily moved at the touch of a button, revealing a kind of secret compartment behind it. The touchscreen is the central command center. This is where the air conditioning, sound system and assistants are controlled. This is clearly laid out and fortunately no longer as error-prone as in early ID models. The controls are largely the same as in VW. In addition, a 5.8-inch screen behind the steering wheel provides all the necessary additional information while driving. The touch fields on the steering wheel trigger sensitively if you only touch them briefly. The volume is controlled by a touch bar in the center.

A compartment with 17 liters of storage space opens at the touch of a button. The cup holders can be removed. There is space for a small bag under the center console alone. Six optional extras from the 3D

printer are available for the interior - from the storage box to the handbag holder. In addition, there is 470 liters of luggage space - although this is less than in the ID.4. And Explorer drivers also have to do without additional storage space under the hood. There is just enough space for the tire repair kit.

The SUV's steering is pleasantly direct and crisp without being overly sporty. The interior remains quiet during driving. You quickly get used to the slightly more angular steering wheel. The Explorer swallows small bumps with ease. The turning circle is small - which helps immensely when maneuvering in the city.

Adaptive cruise control comes as standard, but if you need an assistant to keep and change lanes, you have to pay extra. A whopping twelve ultrasonic sensors, five cameras and three radar units help with this. The 360-degree parking assistant is also available at extra cost.

The competition in the market for electric mid-size SUVs is fierce. Ford would be well deserving of success in Cologne.

Unity HMI, GUI for Toyota

INTERIOR NEWS

TOYOTA IMAGE

Unity has been selected to develop the Graphical User Interface (GUI) for Toyota's next-generation in-car HMI to enhance the driving experience.

This recognition by Toyota underscores the potential of Unity's real-time 3D technology, which has been refined through years of use in the gaming industry on numerous platforms. This partnership brings Unity's technology into Toyota's HMI development pipeline, improving efficiency at all stages of design and development by minimizing rework, optimizing development, streamlining data management and providing consumers with a stable, high-performance GUI experience.

Takashi Imai, Chief Project Manager of the Digital Software Development Center at Toyota Motor Corporation, commented: "At Toyota, as part of our efforts to create innovative user experiences, we are developing our own 'digital cockpits' to connect drivers, vehicles and society. Hundreds of software engineers are involved in the development of instrument clusters, infotainment systems and other components. Recently, the use of advanced 3D graphics has become commonplace in the automotive industry. However, this technology requires specialized skills that can make it difficult for newer engineers. This is where Unity has brought real innovation."

Hyundai Mobis' New Moveable Sound System

INTERIOR NEWS

HYUNDAI MOBIS IMAGE

Hyundai Mobis has introduced a new technology that features a moveable sound system synchronized with the movement of the rollable display installed in the cockpit. The company aims to create a unique interior design and ensure optimal sound quality.

Two years ago, Hyundai Mobis developed the world's first rollable display ([as reported in DVN Interior](#)), which moves up and down. It features a large 30" display that can be adjusted according to driving conditions, providing users with information. When the display is operational, the speakers installed on the right, left and center adjust their angle and move to minimize interference from surrounding sound waves.

When the rollable display expands to its maximum size, it enables the driver and passengers to enjoy music and videos when the vehicle is in idle or autonomous mode. At this point, the moveable sound system reclines and directs sound toward the vehicle's windshield to prevent sound interference from the expanded display. In contrast, the display expands to only one-third of its original size during driving to ensure that the driver's view remains unobstructed. During this time, the speaker shifts toward the driver, and its position is adjusted based on the display's dimensions to deliver a more vivid sound quality to the driver and passengers.

The company is also venturing into the global premium sound system market through a partnership with Meridian, the British audio expert.

Access NetFront Browser for Smart In-Car Connectivity

INTERIOR NEWS

SMART IMAGE

Smart and software company Access Europe have announced a partnership to bring Access' advanced NetFront Browser to Smart vehicles in China. The collaboration will result in user-friendly in-car browsing experiences that promise to set new standards for internet accessibility and vehicle connectivity.

Yang Jun, smart's global CTO, commented, "Access has a proven track record in delivering advanced browser solutions, and we are confident that its expertise will bring a superior internet experience to our customers in China. This partnership not only enhances the in-car experience but also sets a new benchmark for browsing in China's automotive market."

Access will equip smart's new generation of vehicles with a customized version of the NetFront Browser engineered specifically for China's driving environment and regulations. Access' specialist European engineering team, alongside its business development division in China, will work closely with Smart to adapt the browser to meet regulatory standards and provide a user experience specifically tailored to Chinese consumers.

Masahiro Aono, CEO of Access Europe, added, "smart is redefining urban mobility, and this collaboration allows us to integrate our in-car browsing technology expertise with smart's pioneering vision for mobility experiences. Together, we are delivering an outstanding internet experience that meets the needs of modern Chinese drivers."

The collaboration offers multiple features such as optimized UI, voice control, integration with the vehicle multimedia system, better safety and security features, and enhanced bookmark and history management.

Stellantis, Mistral AI Partner for In-Car Assistant

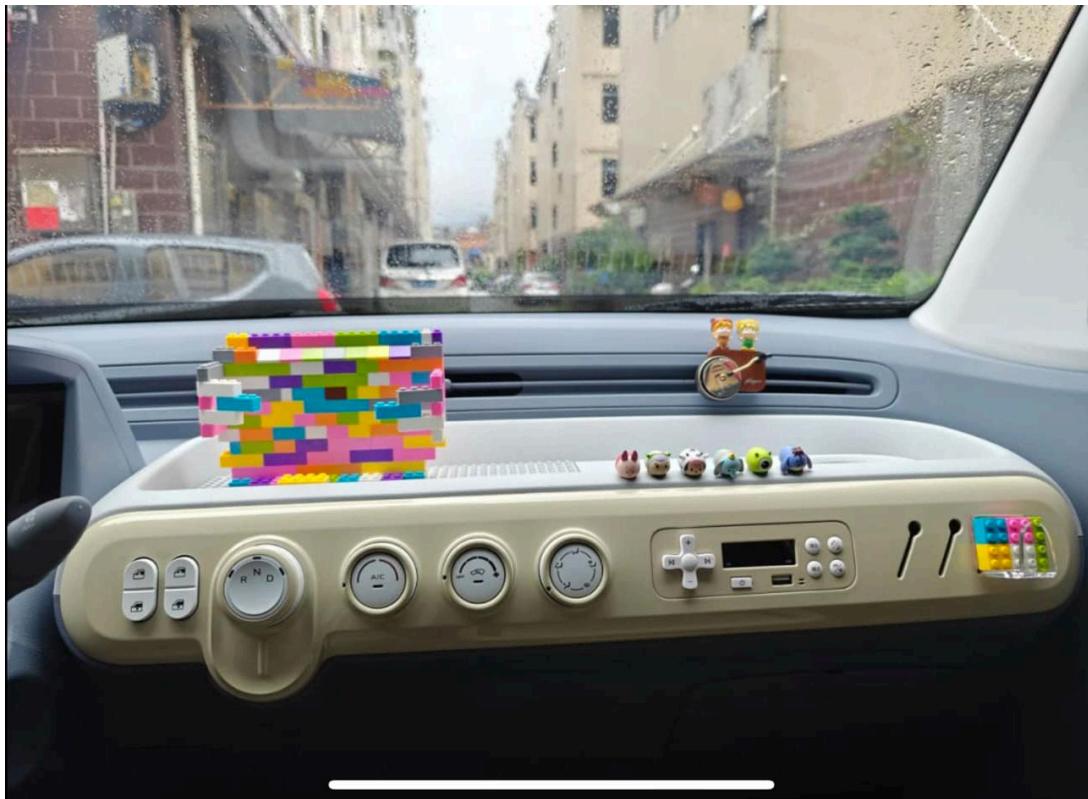
INTERIOR NEWS

Mistral AI is a science and product company making customizable LLMs and GenAI-powered products. They are an independent global company headquartered in Paris, and also present in the US and UK. Stellantis and Mistral AI are deepening their strategic collaboration to integrate artificial intelligence (AI) across multiple areas, from vehicle engineering to in-car experiences. This partnership leverages Mistral AI's expertise in large language models (LLMs) and AI-driven automation to bring AI to many systems and applications across Stellantis, improving data analysis, streamlining development, and enhancing customer interaction.

The latest initiative under this partnership is an advanced in-car assistant, designed to provide real-time, conversational support for drivers, to interact with their vehicles using natural language.

This assistant works as a real-time, voice-enabled user manual. Customers will be able to ask questions about vehicle features, troubleshooting, or warning indicators and receive immediate guidance through natural, conversational interaction.

It will be continuously updated and adaptable to Stellantis brands and models, delivering a seamless and intuitive experience.


Beyond the in-car assistant, Stellantis and Mistral AI are exploring several AI-driven initiatives:

- Bill-of-materials (BOM) data intelligence, helping engineers identify, compare, and optimize part selections to maximize global reuse and efficiency
- Vehicle feedback data analysis, quickly identifying trends and corrective actions, improving product quality and customer satisfaction
- “Club Stellantis” virtual assistant: a chatbot that assists Stellantis employees in France with purchasing company vehicles.
- AI-driven anomaly detection, to detect manufacturing errors in real time, allowing operators to take corrective actions before components are released, improving quality control and efficiency “There are many players in the AI space, and we’re particularly happy to partner with Mistral AI for its strong ability to adapt quickly and drive meaningful results in a highly collaborative way,” said Ned Curic, Stellantis Chief Engineering & Technology Officer. “Together, we are exploring AI’s potential across several domains to enhance our product development, customer experience and deliver real benefits.”

The Design Lounge

Bestune Xiaoma Mini EV with Lego Connections

THE DESIGN LOUNGE

FAW BESTUNE IMAGES

The FAW Bestune Xiaoma was first presented during the Shanghai Auto Show in China as a convertible city car. Nowadays, it was exposed by the Chinese Government during the domestic homologation process. As a result, images and specs of the production model Bestune Xiaoma were revealed. It aims to become a one more Wuling Hongguang Mini EV killer.

It is a small two-door city car with dimensions of 3,000L x 1,510W x 1,630H mm and a wheelbase of 1,953 mm. It is 83 mm longer, 17 mm wider, and 9 mm higher than the Wuling Hongguang Mini EV, the Chinese bestselling EV in 2022. The exterior design of the Bestune Xiaoma is typical for an electric city car. It has cute boxy proportions, short overhangs and rectangular headlights and taillights. Its charging port sits at the front end, covered with a Bestune logo.

Looking at the interior of the convertible concept car. It has an LCD instrument panel, a two-spoke steering wheel with a flat bottom, leatherette seats.

For connectivity, this mini EV has a flat LEGO board as its central panel! That means you can build your own dashboard accessories—from a custom phone holder to an iron throne or even a tiny cityscape while waiting at a red light.

In the late 90's, automotive interior supplier Johnson Controls (now Adient) and LEGO Group teamed up to attack an ageless burning question: "Are we there yet?" The first resulting product -- the PlaySeat with LEGO Connections by Johnson Controls -- is a fold-out rear seat with LEGO connection on the back. It was presented with GM in a Zafira at the 1999 North American International Auto Show in Detroit. Unfortunately, it didn't go through the child safety approval process, and it has been forgotten since!

News Mobility

Parkopedia EV Charging Data Integrated in Mini's New Display

NEWS MOBILITY

MINI IMAGE

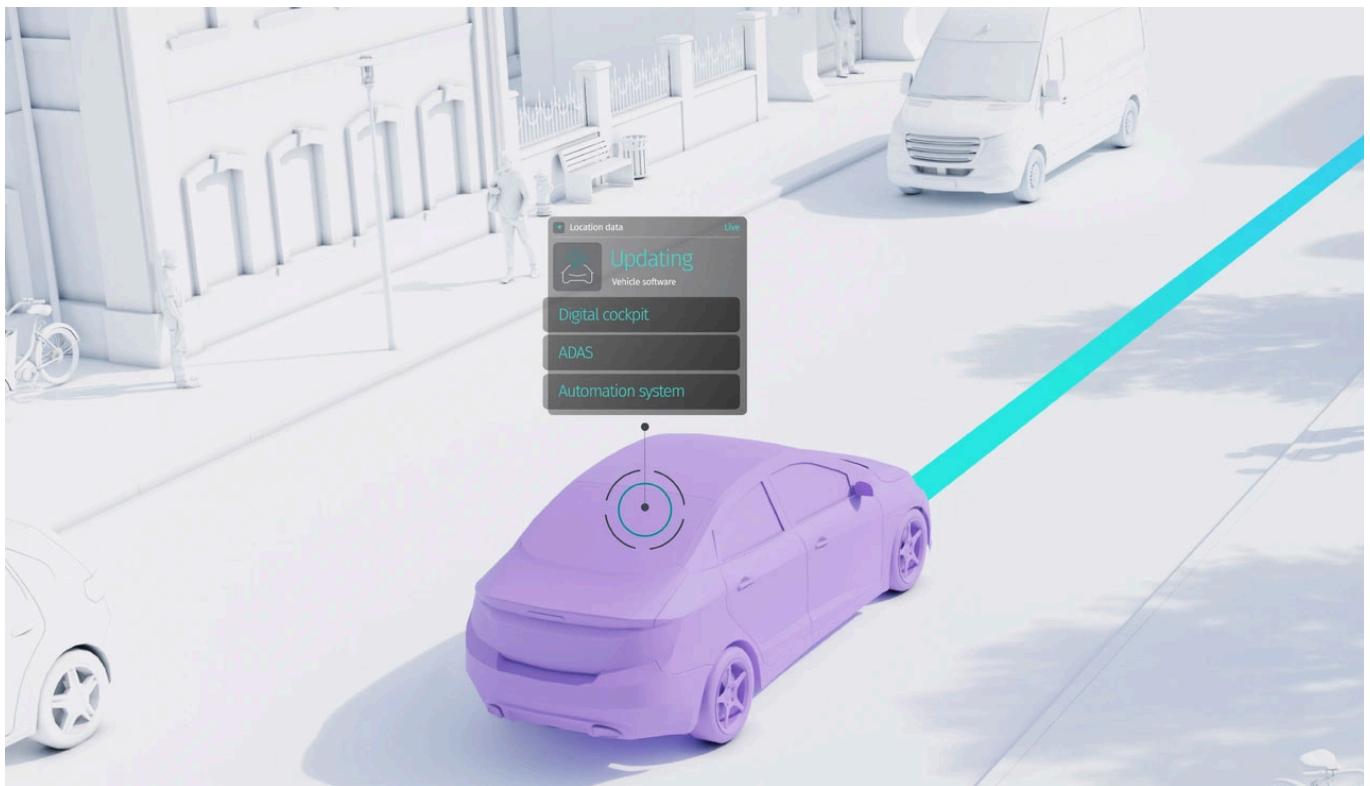
Mini's latest round media system integrates Parkopedia's award-winning EV charging data into the vehicle. This enables drivers across the USA, Europe and Asia to locate EV charging from the comfort of their cars, addressing one of the pain points of owning an EV.

EV charging data plays a main role in the latest-gen electric Minis, which feature the automotive world's first circular in-car OLED screen. This high-resolution 240 mm screen offers strong clarity and next-level digital technology, while retaining the iconic Mini design. The lower part of the screen is dedicated to important functions including navigation, which can be accessed at any time.

The central OLED display contributes to an uncluttered interior layout that reduces distractions, enabling the driver to focus on driving. Mini has made sure all vehicle functions are operable through either touch or voice controls, with the display being moved nearer to the driver to ensure easy reach.

Mini navigation features 3D visualization and augmented reality displays as well as information on free parking spaces, with an integrated in-car payment functionality.

According to Parkopedia Global Driver Survey, more than 90% of EV drivers are anxious about charging, with 44 per cent having run out of charge before. The new circular OLED screen and the charging data functionality aim to make charging a "pleasing experience", the companies said. The study also showed 60% of drivers want in-car payments for services such as parking, charging, fuel and tolls.


Julian Kisch, corporate and governmental affairs spokesperson, Mini, said, "Not only does this service simplify the process of locating EV chargers, but it makes the whole charging experience more in tune with

Mini's brand values. The circular OLED media system provides a uniquely fun experience, while being able to seamlessly access charging data directly from the vehicle takes the stress out of charging for Mini drivers."

Markus Dohl, VP of sales, Europe, Parkopedia, said, "Mini's new circular media system provides a distinct, customizable driving experience, and the addition of Parkopedia's high-quality and extensive charging data charmingly displayed on their circular OLED screen addresses one of the main concerns raised by EV drivers – finding and navigating to EV chargers to alleviate charging anxiety, potentially even with a smile."

Here, AWS Cooperate on AI-Based Map Systems

NEWS MOBILITY

HERE IMAGE

Here Technologies and Amazon Web Services (AWS) have announced a collaboration on new AI-powered mapping systems for SDVs. As part of a ten-year agreement worth one billion US dollars, Here will use AWS' cloud infrastructure to provide live maps and location-based services for automotive, transportation and logistics companies.

Here has been using AWS for nearly a decade for its core cloud infrastructure, data platform, analytics and the deployment of its proprietary artificial intelligence and machine learning models, according to the announcement. Through the new, expanded collaboration, Here aims to offer car manufacturers a set of cloud-native tools and techniques to accelerate the development of new innovations. These include enhanced active safety features, infotainment systems and location technology for complex navigation needs, including multiple charging stops for electric vehicles.

With SceneXtract, for example, Here has introduced a tool for simulating real driving scenarios. SceneXtract uses map data from the Here HD Live Map as well as services from AWS for natural language processing and generative AI. According to Here, this allows automotive developers to quickly localize the HD Live Map data and export it into scenes for testing. This should reduce the time, effort and costs involved in preparing new simulations for testing driver assistance and automated driving functions.

Here and AWS are also planning to develop and scale new transportation and logistics applications beyond the automotive industry. These will be available via the AWS Marketplace. The aim is to help companies optimize order processing and delivery processes and make shipments more transparent.

General News

Zeekr Buys Lynk & Co

GENERAL NEWS

ZEEKR MIX, LYNK & CO 02 (ZEEKR LYNK & CO IMAGES)

On February 14, Zeekr and Geely Automobile Holding Limited (Geely Automobile) announced the completion of Zeekr's acquisition and capital injection into Lynk & Co. Following the transaction, Zeekr now holds a 51% stake in Lynk & Co, while Geely Automobile retains 49%, making Lynk & Co a partly owned subsidiary of Zeekr.

The transaction was completed within just three months of the strategic integration plan announced on November 14, 2024. Simultaneously, Zeekr claimed that Zeekr Technology Group has been officially incorporated, which now oversees both the Zeekr and Lynk & Co brands.

Under a dual-brand strategy, Zeekr Technology Group will operate with a robust product lineup, integrating manufacturing, supply chain, and overseas operations into a unified system. Leveraging AI-driven innovation, the company aims to build a highly competitive automotive powerhouse.

The group will implement a unified management framework and introduce four key internal reforms: enhanced product development collaboration, manufacturing system innovation, upgraded user operations, and breakthroughs in intelligent systems. These initiatives are expected to improve product development efficiency by over 15% and enhance integrated "big manufacturing + big quality" management efficiency by more than 20%. Additionally, the company will establish a "dual-brand value pyramid" for user management, using AI to drive corporate transformation and boost overall operational efficiency by over 20%.

Zeekr Technology Group will maximize synergy effects by integrating resources in vehicle architecture, electronic and electrical systems, intelligent driving, and smart cockpits, while leveraging large-scale manufacturing advantages to drive cost reduction and efficiency gains.

An Conghui, CEO of ZEEKR Technology Group, stated that In January 2025, the group's cumulative sales exceeded 42,000 vehicles, with its global user bases already topping 1.8 million.

In 2025, ZEEKR Technology Group plans to launch five new vehicle models, including four plug-in hybrid electric SUVs in the full-sized and large-sized segments. The group has set an ambitious annual sales target of 710,000 vehicles, a 40% year-over-year surge, with Lynk & Co contributing for 390,000 units and ZEEKR for 320,000 units.