

See the Difference

Dirk Seebaum, November 16, 2021

Automotive LiDAR – solutions for optical alignment and testing in mass production

IOPTICS

 $f = 100 \, \text{mm}$

Experience – ProCam[®] product innovations for camera assembly

Experience – ProCam[®] product innovations for LiDAR assembly

LiDAR sensor module optical alignment and testing processes

Optical alignment tasks...

- Emitter Unit (Emitter + Optic)
- Receiver Unit (Receiver + Optic)
- Emitter Unit to Body
- Receiver Unit to Body

... and procedures

- active alignment
- passive alignment

Active alignment process

Example 1

Example 2

Passive alignment process

Process selection – active / active for LiDAR alignment

Process selection – passive / passive for LiDAR alignment

LiDAR alignment capabilities

Specified Repeatabilities:

- Best Focus Z
- Decentering X/Y
- Tilt Alignment X/Y
- +/- 5μm (5σ) +/- 1μm (5σ)
- +/- 200μrad (5σ)

Results from current project:

Active Emitter Alignment	Repeatability (5σ)	Unit
Best Focus	± 3,360	μm
Tilt Alignment X	± 32,636	μrad
Tilt Alignment Y	± 137,772	μrad
Decentering X	± 0,174	μm
Decentering Y	± 0,407	μm

Emitter: 940 nm, objective lens: 60° FOV, EFL: 15mm

Active alignment LiDAR projects

Active Alignment Projects

- Time of Flight Camera for automotive Kick Sensor
 - Module type Emitter module
 - Working Wavelength 905 nm
 - Cycle Time 30 sec
- Laser scanner with rotating mirror module for ADAS
 - Module type Emitter module
 - FOV 70 degree; Working Wavelength 905 nm
 - Cycle Time 45 sec
- Flash LiDAR for ADAS Module
 - Module type Emitter and Receiver module
 - FOV 30, 45, 60 degree; Working Wavelength 940 nm

Passive alignment LiDAR projects

Passive Alignment Projects

- High Resolution Flash LiDAR for ADAS
 - Module type Receiver module (SPAD Array)
 - FOV 135 degree; Working Wavelength 905 nm
 - Cycle Time 70 sec
- High Resolution Flash LiDAR for ADAS
 - Module type Emitter and Receiver module
 - FOV 11, 60, 120 degree; Working Wavelength 880 nm
 - Cycle Time 18 sec
- High Resolution Flash LiDAR for ADAS
 - Module type –Receiver module
 - FOV 28, 130 degree; Working Wavelength 1550 nm

Automotive camera assembly line (optical alignment & testing)

Production line for ADAS cameras

- Prime Contractor: PIA Automation
- Sub Contractor: TRIOPTICS GmbH, Germany

Automotive LiDAR assembly line (optical alignment & testing)

Production line for automotive LiDAR

- Prime Contractor: TRIOPTICS GmbH, Germany
- Sub Contractor: PIA Automation, Germany

LiDAR assembly and testing production line

Production line for automotive LiDAR Cycle Time <20s

ProCam[®] TT

Assembly and optical alignment of emitter & receiver

- Glue dispensing
- Optical Alignment
- UV curing

CamTest EOL Tester

LiDAR module optical test after oven curing

Remeasure focus position, decentering, tilt

Automotive LiDAR testing equipment

Test equipment for automotive LiDAR

 Pre-assembly testing of function and properties of electrical and optical sensor components

 Post-assembly performance tests of the completed LiDAR sensor

Automotive LiDAR testing equipment – Pre-assembly

Pre-assembly test equipment for automotive LiDAR

Test 1– Emitter power, pulse, wavelength

Test 2 – Receiver OECF, homogeneity, pixel test

Test 3 – Single emitter test

Automotive LiDAR testing equipment – Post-assembly

Post-assembly test equipment for automotive LiDAR

- Scatter plate test
- Reflectivity chart test
- Focus test
- Automated inspection systems
- Interface for customer-specific measurement procedure
- Manual or automatic (robot) loading

LiDAR Post-assembly- scatter plate test

LiDAR Post-Assembly- Scatter plate test

LiDAR Post-assembly- reflectivity chart test

Post-assembly test equipment for automotive LiDAR

Adjustment options:

- Custom designed chart w/ different reflectivities (size: 3,5m x 2m)
- 3 axes adjustment
- radial (z) = ± 2,5mm
- $Rx, Ry = \pm 2^{\circ} (\pm 0,02^{\circ} accuracy)$
- 2 axes Gimbal system for fast and accurate sensor positioning

LiDAR Post-assembly- focus test

Post-assembly test equipment for automotive LiDAR

- Remeasure focus position (z)
- Remeasure decentering (x, y)
- Remeasure tilt (Rx, Ry)

Foundations for Automotive LiDAR

From Lab to Fab: one process across scales

- + Optomechanical concept
- + Metrology
- + Process control software

- + Data Interface
- + HMI

From Lab to Fab: one process across scales

uniform, defined, and traceable parameters

Prototyping

Production

Ramp-up

Summary

Begin with an end in mind^{*} ... consider manufacturability for mass production early in the design process of your LiDAR product.

Be proactive... develop the alignment and test methodology in parallel with sensor design; apply and evolve the same building blocks to your manufacturing process from laboratory to production to reduce NRE costs and shorten time to market.*

Think win-win^{*} ... work with the experts in a timely manner to avoid costly mistakes and redesigns; help yourself and your partners deploy the appropriate technology at the right time.

*Stephen R. Covey: The 7 Habits of Highly Effective People

© 2021 TRIOPTICS GmbH

Contact and more information

Booth at the DVN Conference

TRIOPTICS Website - Automotive: https://trioptics.com/markets-solutions/automotive/

TRIOPTICS Website – ProCam Products:

https://trioptics.com/products/procam-camera-modules-active-alignmentand-testing/

We are looking forward to our cooperation.

See the Difference