FUTURE OF FLASH LIDAR COMPONENTS AND EMBEDDED KI FOR LIDAR

Dr. Christian Walk, Dr. Jennifer Ruskowski

CONTENT

- What kind of LiDAR do we address in this talk?
- Flash LiDAR stands on the pull position!
- Why processing LiDAR data embedded with AI?

What kind of LiDAR do we address in this talk?

- Direct Time-of-Flight (d-ToF)
 - Focussed on Flash LiDAR
 - → Spatial resolution based on 2D detector arrays
 - → SPADs (Single-Photon Avalanche Diodes)
 - → Fabricated in CMOS

Why Flash LiDAR?

- Most compact,
- 2. cheapest,
- 3. with lowest power consumption,
- 4. and most stable (no moving (MEMS) parts)

Flash LiDAR stands on the pull position

Component "Laser"

- Higher Power
 - wer Trac
- Beam divergence

- Shorter Pulses
- **off[®]S** Repetition rate
- Temperature stability of the emission
- **...**

- Combination of those attributes improved in the last years
- Improvements in assembly and interconnection technology, heat dissipation, segmentation, improved laser drivers, new technology concepts

Flash LiDAR stands on the pull position

Improvements of maximum measuring distances depending on laser source power (80 W, 500 W) for Flash LiDAR with a field of view of 30° x 10° and 25fps.

Flash LiDAR stands on the pull position

Component "Detector"

= {2D-SPAD arrays} Detector

- High pixel number
- High NIR efficiency

- High pixel area
 - Sunlight
- suppression Fast read-out

©Sony, website IMX459

©Sony, website IMX459

Pile, D. Megapixel single-photon camera. Nat. Photonics 14, 597 (2020). https://doi.org/10.1038/s41566-020-0697-7

- Some 2D SPAD arrays were presented 2021: as from Sony or Canon
- Still a lack of 1) free-available devices and 2) accessible SPAD-processes for customized detector arrays

Fraunhofer IMS stands on the pull position

Only known accessible 2D-SPAD array process on 8 inch wafer

- Inhouse CMOS SPAD process
 - Proved quality in customized designs with high throughput
 - NIR improvements under development
- ROIC design
 - TDCs, quenching and sunlight suppression algorithms
- Fabrication in standard CMOS process
 - 180 nm foundry process in fabrication
- Inhouse Wafer-to-Wafer bonding and final processing
- Commissioning third party to attach Micro-lens arrays (MLA)

Fraunhofer IMS stands on the pull position

Only known accessible 2D-SPAD array process on 8 inch wafer

Successfully demonstrated with CSPAD α lpha

This work is partly funded by the Federal Ministry of Education and Research under the project reference numbers 16FMD01K, 16FMD02 and 16FMD03.

Why to process LiDAR embedded with AI?

Brief insight into the world of LiDAR raw data

- Histograms: collects raw-data of LiDAR acquisitions
- Contains information about single photon behavior in every pixel
- Influenced by system performance, applied algorithms and environmental condition (object, weather condition, ..)

- Every histogram speaks with a characteristic DNA!
- Disadvantage of DNA: too much data → slow processing

Why to process LiDAR embedded with AI?

Brief insight into the world of LiDAR raw data

Disadvantage of histogram DNA: too much data → slow processing

Take Aways

- Flash LiDAR powers up by improved components
- Limited access to 2D SPAD CMOS processes

CSPAD technology at Fraunhofer IMS ready for customized solutions

■ Embedded AI on LiDAR raw-data is needed to prove data quality

Find more information about 3D-Sensing at https://www.ims.fraunhofer.de/en/

FUTURE OF FLASH LIDAR COMPONENTS AND EMBEDDED KI FOR LIDAR

Dr. Christian Walk, Dr. Jennifer Ruskowski

Thank you for your attention!

