

High-power VCSEL arrays for nextgeneration LiDAR Systems

DVN Lidar Conference November 16th, 2021

Matt Everett, Product Line Director, 3D Sensing Eric Hegblom David Cheskis Ken Huang

Agenda

- Lumentum introduction
- Today's automotive LiDAR requirements and challenges faced
- Vertical-cavity surface-emitting lasers (VCSELs) as the solution
- Introduction to multi-junction VCSELs
- LiDAR approaches
- Motivation for multi-junction VCSELs and improved performance
- Lumentum VCSEL array performance for 1D + matrix addressable arrays
- Summary

Lumentum – A Leading 3D Sensing Optical Solutions Provider

@ 2021 Lumentum Operations LLC $\ 3$

Lumentum Automotive Synergy

- Lumentum history lends itself well to automotive industry
 - High quality, reliable products
 - Proven product excellence under challenging conditions (temperature, vibration)
 - High volume manufacturing Millions of VCSELs shipped every week

- Lumentum's Kaizen quality culture
- Submarine proven fiber optical component history
- >1B units of VCSEL chips shipped, zero field failures!
- Scale, quality and cost structure to support automotive LiDAR requirements
- IATF 16949-2016 certified VCSEL fab
- VCSEL module for automotive in-cabin applications completed AEC-Q102 qualification

Automotive LiDAR

- High Power VCSEL arrays are enabling LiDAR system performance...
 - Long range
 - Best field of view (FoV)
 - High resolution
 - High object detection accuracy (<10 cm)
- ... While meeting strict implementation requirements...
 - Eye safety limits
 - High reliability, no moving parts
 - Environmental robustness
 - Compact, easy to integrate in a vehicle
 - Low cost
- ... making visions of the future reality
 - Robotaxis
 - Fully autonomous vehicles

*Courtesy of Hesa

*Courtesy of Driving Vision News

*Courtesy of Cruise

Challenges for the ToF LiDAR Illuminator

Why Lumentum VCSELs?

Performance	Versatility	 Scalable power, from just a few mW to hundreds of watts Almost infinitely configurable and adaptable Easy packaging and integration with existing and future detector, driver, and optical technologies Addressable, which paves the way to truly solid-state systems with no moving parts! Small size (and decreasing!) and performance enable higher density and flexibility
	Cost	 High volume fab shipping millions of VCSELs every week Already scaled to meet coming LiDAR demand Proven semiconductor manufacturing and test processes Lower cost on optics - lens and DOE
	S tability	 Performance stability over temperature with minimal power drop Wavelength stability over operating temperature range <10nm shift; no need for TEC or other means Multi-junction technology reduces loss at higher currents
	Excellence	 High power with nanosecond pulse capability (<10 ns) and low duty cycles High efficiency with low power consumption and thermal load Proven high quality and reliability Ideal for d-ToF applications with increasingly Longer sensing range No Burn-in required
	Lumentum	 Market leading slope efficiency and power density World's leading supplier of 3D sensing illuminators Proven kaizen history and quality culture Over 1B shipped with zero field failures VCSEL chips and modules undergo AEC-Q102 qualification IATF16949 certified fab
LUMENTUM		© 2021 Lumentum Operations LL

© 2021 Lumentum Operations LLC 7

Multi-Junction for High Power VCSELs

- More junctions → More photons (higher output power) for the same input current and area
- Higher power normally requires
 Higher current → Higher I²R losses
- Adding more junctions improves efficiency of laser at higher output power enabling higher output power
- Reducing current improves driver efficiency
- At low (~<0.1% duty-cycle)
 - 200mW to 3W/emitter
 - High power density (100W/mm² to 1.5 kW/mm²)

Increasing Peak Power with Multi-Junction VCSEL Design and Short Pulses

- More junctions increases voltage → Lower current to reach same power
- Lower current -> Lower I²R losses →
 Peak wall-plug efficiency extends to higher power
- Higher power purely from efficiency increase limited ... need to reduce heating with shorter pulses

Multi-Junction for LiDAR: 905 nm

- 905 nm array for LiDAR application
- 6 Junction EPI design
 - Aperture diameter 17.3 um
 - 152 emitters
- 8 ns pulse width, 0.05% duty cycle, using commercial high-speed driver which limits maximum current to 25A
- 140W peak power at 25A peak current at 25°C,
 >1500 W/mm² power density (0.85W/emitter at 75°C)
- High slope efficiency
 - 6.1 W/A peak SE at 25°C
 - 5.9 W/A peak SE at 75°C

LiDAR Architectures

Electronic vs. Mechanical scanning

- All electronic scan LiDAR:
 - Simple, compact, robust optics
 - Already employed in consumer electronics for few meter range
 - Larger laser chip required vs. mechanical scan approach

Electronic Scan – Matching to Detector Array

- All electronic scan requires match between VCSEL array and single photon avalanche detector (SPAD) array
- Low complexity of optical solution(s) possible

Electronic Scan – Matching to Detector Array

- All electronic scan requires match between VCSEL array and single photon avalanche detector (SPAD) array
- Low complexity of optical solution(s) possible
- Coaxial designs possible and already demonstrated!

Matching to Single-Photon Avalanche Photodiode (SPAD) Arrays

Line under readout

- SPAD arrays may have hundreds of columns
- VCSEL array also requires hundreds of channels
- Newer SPADs can readout in blocks rather than lines
- Block readout different from macro-pixels.
 Pixels not summed, but read-out individually

Both read-out zone same # of pixels. SPADs same size, resolution

Matching Column Addressable VCSEL to Line Read-Out SPAD

Line under readout

Image only x, diffuse in y:

- VCSEL channel lower aspect ratio, smaller chip
- Requires more complex optics
- Requires near 100% fill-factor of SPAD sensor pixel

Addressable VCSEL Array Geometries

Column addressable

- Typ. config front side anodes, backside cathode
- Conductive substrate

Pro / Cons:

- Simple fabrication
- Works with commonly available line read-out SPADs
- Large chips or many bond-pads often required
- Trade-off for width / number of channels
 - Narrow -> higher resistance, worse uniformity
 + better overlap with SPAD column
 - Wider -> lower resistance, better uniformity, worse overlap with SPAD column

Matrix addressable

- Frontside anode and cathodes overlapping
- Isolated substrate

Pro/Cons:

- More complex fabrication but can be smaller than column addressable for similar number of channels
- · Requires detector to have block read-out
- Current flows over wider path, better uniformity over sub-array
- More efficient with optical power, enables longer distance
- Fewer contact pads (M+N) pads for M x N sub-arrays

D

3

High-Power 1D Addressable Array

- 1d addressable chip
- 100 channels
- Chip size **16mm** x 4.5mm > 70mm²
- 940nm, 5J

6 ns pulse, 0.1% duty-cycle, 25°C

Results 2D Array, Individual Sub-Array (in array of ~200 elements)

- 905nm, 6J
- ~7ns pulse, 0.1% duty-cycle.
- Sub-array size ~0.05 mm² Overall chip ~12mm²

Summary

- The latest generation of high-power, multi-junction VCSEL chips are the light sources of choice for automotive ToF LiDAR architectures
- Addressability of individual emitter sections allows a perfect match of the emitter to available and future detector devices
- These VCSEL laser chips are highly reliable and the infrastructure for cost efficient volume production is in place today
- Addressable VCSEL arrays for LiDAR
 - Simpler optics + no need for TEC
 - Proven at consumer volumes for shortest distances
 - Higher peak power densities > 1kW/mm² (low-duty-cycle, few ns pulse) permit extension to longer distances
 - Matrix addressability opens additional options for LiDAR architectures

Thank You

