

Impact of LiDAR Performance Degradation Caused by Outer Factors on Headlight Lens

Akinori Ito Koito Manufacturing Co., Ltd.

Koito Confidential

Nov. 15, 2021 page 1 of 17

- Introduction (about Koito)
- The Issue: Impact of outer lens degradation on sensor performance
- Experimental method and verification procedure
- Experimental results and discussion
- Suggested solutions (Cleaner)
- Conclusion

Introduction: Koito LiDAR History

- Developing Laser Range Finder in 1991.
- Suggesting headlamp and cleaning system with sensor (CES 2020).
 - Headlamp module built-in LiDAR
 - Compact integrated module of LiDAR/Camera with cleaning system

Introduction: Purpose of Sensor Built-in Headlamp

- 1. Sensor built-in headlamp / rear lamp at four corners of vehicle detect pedestrians and vehicles at 360° around the vehicle.
- 2. Outer lens protects sensor from pebbles and dirt.
- 3. Headlamp cleaner removes dirt to maintain sensor performance.

Expected features

Conceptual diagram

A serious concern when sensors are built into a lamp is the influence of LiDAR performance due to scratches and adhesion of mud and water to the lens.

Outer lens

(i) Scratches	(ii) Stains	(iii) Water adhesion
Car wash, scratches, pebbles, flying rocks	Mud, sand, dust	Rain, fog

(i) Scratches		(ii) Stains	(iii) Water adhesion
(1) Steel wool scratches (anisotropic)	(2) Sand spray (microscopic dents)	(3) Standardized mud for cleaner test	(4) Spray gun
Haze ^(*1) : 10%/20%	Haze: 4%/6%/10%	Tt ^(*2) : 85%/75%/56%/40%/26%	Haze: up to 50%
SEM image	SEM image		

(*1) Haze: ratio of light diffusion at the material

(*2) Tt: ratio of visible light transmittance through the material

Effect of Lens Degradation: Steps of Verification

Koito Confidential

Nov. 15, 2021 page 7 of 17

Step 1: Result: Laser Transmittance of Degraded Lens

- Transmittance of mud samples decreases as mud becomes thicker from transmittance 75%
- Water adhesion is a major factor to attenuate laser.

Step 1: Appearance of Degraded Lens

<u>(3) Mud</u>

Appearance	KOTTO Manufactur time Same activation to M 式 公社 小 条製作所 KOTTO MANUFACTURING CO., LTD	KOTO Wales for her size reference 株式会社 小系数作所 WORD WARWARTWARD CO., CTO	Koto Hadder for Yaar below Rote Acade 林式会社 小然製作所 Andro Manufraet Linning Col Little	исто ото мало за посто исто мало стория со то мало со то	「日本での 「
Transmittanc e	85%	75%	56%	40%	26%

(4) Water droplets

Appearance		
Transmittance	70%	50%

- Influence of water droplets depends on how they adheres.
- Tiny and congested droplets blocks laser most.

Step 2: (1) Evaluation of LiDAR's Maximum Effective Distance

Step 2: (1) Evaluation of LiDAR's Maximum Effective Distance

- Scratches are rather tolerable, but mud and water droplets may cause significant degradation of LiDAR performance depending on the degree of adhesion.
- The result is similar and almost predictable from Step 1 (laser transmittance).

Step 2: (2) Verifying the Deviation of the Detection Position

- Each type of degraded lens is set 0.15m in front of a LiDAR.
- Accuracy (average position) in X-, Y-, and Z-direction is measured.

Step 2: (2) Verifying the Deviation of the Detection Position

Koito Confidential

Nov. 15, 2021 page 13 of 17

Cause Analysis of Increased Distance through Degraded Lenses

Quantitative analysis of pulse waveforms after passing through degraded lenses is conducted.

For ToF LiDAR's post-processing, countermeasure of walk errors is recommended in order to keep high accuracy and precision even in adverse environments.

Koito Confidential

-

Туре о	f degradation	Degradation factor in the market	Impact level
Saratabaa	(1) By steel wool	Scratches	*
Scratches	(2) By sand spray	Flying rocks, sandstorms	*
	(3) Mud	Mud, sand or dust stains	***
(4) W	ater adhesion	Rain	***

- The impact on LiDAR performance was significant for adhesion of mud, water, etc. to the lens.

- This requires lenses that are resistant to rain and dirt.

Koito's Sensor cleaning system

- Using air blow and liquid injection, Koito's cleaning system deals with both mud and water droplets.
 - Air blows away water droplets and prevents them from sticking by continuing to blow.
 - For mud stains difficultly removable by spraying alone, the cleaner liquid is used.

As a result of our experiment with deteriorated lens samples, the influential factors that deteriorate performance of LiDAR are dirt and waterdrops.

Factors	Impact level	
Scratches	*	
Microscopic dents	*	
Mud (dirt)	* * *	Sensor cleaning
Water adhesion	***	system

We recommend an integrated module with LiDAR and cleaning system.

Future plan

Development of more effective cleaner, lens material, and surface treatment to maintain LiDAR performance.

Thank you so much for your attention.

